Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 26, № 1 Январь - Март 2024

Оценка схемы многоканального углового прессования прутков и возможности ее применения на практике

Том 25, № 4 Октябрь - Декабрь 2023
Авторы:

Логинов Юрий Николаевич,
Замараева Юлия Валентиновна
DOI: http://dx.doi.org/10.17212/1994-6309-2023-25.4-90-104
Аннотация

Введение. Обработка малопластичных материалов требует создания высокого уровня сжимающих напряжений в процессе деформации. Это требование реализуется, например, в процессе равноканального углового прессования (РКУП). Однако продукция, получаемая методом РКУП, имеет сечение, идентичное исходной заготовке, что является одним из недостатков этого способа. Метод неравноканального углового прессования (НРКУП) в отличие от РКУП дает возможность изменить форму исходной заготовки в сторону приближения к форме готового продукта. Однако известное устройство НРКУП позволяет получить продукцию только в виде тонкой полосы прямоугольного поперечного сечения. Известные устройства для многоканального прессования не углового типа также имеют недостаток – их реализуют только на прессах горизонтального типа, где есть возможность приема длинномерных изделий на площадях цеха. Цель работы: оценка схемы многоканального углового прессования прутков, сочетающей в себе изменение формы исходной заготовки в поперечном сечении, а также накопление в процессе деформации высокого уровня деформации. Методы исследования: конечно-элементное моделирование с помощью программного модуля DEFORM. Результаты и обсуждение. В работе рассмотрена схема процесса углового прессования с применением устройства, позволяющего получать, например, магниевые прутки диаметром d = 4,1 мм при количестве каналов матрицы n = 3 из заготовки круглого поперечного сечения. Контейнер данного устройства в своей нижней части имеет прямоугольный паз, куда вставлена матрица. Моделирование исследуемого процесса с применением матрицы при расположении осей ее каналов в плоскости, ортогональной оси контейнера, и в первом варианте – вдоль оси прямоугольного паза, а во втором – вдоль радиуса контейнера позволило осуществить оценку распределения среднего напряжения. Установлено, что на металл заготовки в обоих вариантах процесса деформации воздействуют напряжения сжатия на высоком уровне (–1600 МПа). Оценка степени деформации отпрессованных прутков позволила выяснить, что в обоих вариантах процесса на начальной стадии максимум степени деформации может достигать значения 2,6, а на установившейся стадии – 5,0. Установлено, что в случае применения первого варианта матрицы уровень деформации по длине прутков ниже, чем при применении второго варианта матрицы. Разница достигает 20 %. Посредством оценки распределения степени деформации в поперечном сечении отпрессованных прутков вблизи очага деформации установлено, что в случае применения первого варианта матрицы отпрессованные прутки первого и третьего канала имеют неравномерность, причем большее значение степени деформации находится на периферийной части прутков со стороны, граничащей с центральным прутком. Это различие степени деформации достигает 20 %. При размещении второго варианта матрицы эта неравномерность уменьшается до 12 %. Таким образом, в случае применения матрицы с расположением осей каналов вдоль радиуса контейнера степень деформации распределяется более равномерно по сравнению со степенью деформации при применении матрицы с расположением осей каналов вдоль оси прямоугольного паза.


Ключевые слова: Угловое прессование, малопластичные металлы, прессовый инструмент, скорость деформации, степень деформации, метод конечных элементов

Список литературы

1. Biswas S., Dhinwal S.S., Suwas S. Room-temperature equal channel angular extrusion of pure magnesium // Acta Materialia. – 2010. – Vol. 58 (9). – P. 3247–3261. – DOI: 10.1016/j.actamat.2010.01.051.



2. Fatemi-Varzaneh S.M., Zarei-Hanzaki A. Accumulative back extrusion (ABE) processing as a novel bulk deformation method // Materials Science and Engineering: A. – 2009. – Vol. 504. – P. 104–106. – DOI: 10.1016/j.msea.2008.10.027.



3. Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process / Q. Yang, B. Jiang, J. He, B. Song, W. Liu, H. Dong, F.S. Pan // Materials Science and Engineering: A. – 2014. – Vol. 612. – P. 187–191. – DOI: 10.1016/j.msea.2014.06.045.



4. Маркушев М.В. К вопросу об эффективности некоторых методов интенсивной пластической деформации, предназначенных для получения объемных наноструктурных материалов // Письма о материалах. – 2011. – Т. 1, № 1. – С. 36–42. – DOI: 10.22226/2410-3535-2011-1-36-42.



5. Minárik P., Král R., Janecek M. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys // Applied Surface Science. – 2013. – Vol. 281. – P. 44?48. – DOI: 10.1016/j.apsusc.2012.12.096.



6. Production, structure, texture, and mechanical properties of severely deformed magnesium / A.Yu. Volkov, O.V. Antonova, B.I. Kamenetskii, I.V. Klyukin, D.A. Komkova, B.D. Antonov // The Physics of Metals and Metallography. – 2016. – Vol. 117. – P. 518?528. – DOI: 10.1134/S0031918X16050161.



7. Naik G.M., Gote G.D., Narendranath S. Microstructural and Hardness evolution of AZ80 alloy after ECAP and post-ECAP processes // Materials Today: Proceedings. – 2018. – Vol. 5, iss. 9 (3). – P. 17763–17768. – DOI: 10.1016/j.matpr.2018.06.100.



8. New schemes of ECAP processes for producing nanostructured bulk metallic materials / G.I. Raab, A.V. Botkin, A.G. Raab, R.Z. Valiev // AIP Conference Proceedings. – 2007. – Vol. 907. – P. 641–646. – DOI: 10.1063/1.2729585.



9. Effect of equal channel angular pressing on structure, texture, mechanical and in-service properties of a biodegradable magnesium alloy / N. Martynenko, E. Lukyanova, V. Serebryany, D. Prosvirnin, V. Terentiev, G. Raab, S. Dobatkin, Y. Estrin // Materials Letters. – 2019. – Vol. 238. – P. 218?221. – DOI: 10.1016/j.matlet.2018.12.024.



10. Jahadi R., Sedighi M., Jahed H. ECAP effect on the micro-structure and mechanical properties of AM30 magnesium alloy // Materials Science and Engineering: A. – 2014. – Vol. 593. – P. 178?184. – DOI: 10.1016/j.msea.2013.11.042.



11. Патент № 2475320 Российская Федерация, МПК B21C 25/02, B21J 13/02. Устройство для одновременного равноканального углового прессования четырех заготовок: № 2011106083/02: заявл. 17.02.2011: опубл. 20.02.2013, Бюл. № 5 / А.М. Иванов; заявитель и патентообладатель Институт физико-технических проблем Севера им. В.П. Ларионова СО РАН.



12. Логинов Ю.Н., Буркин С.П. Оценка неравномерности деформаций и давлений при угловом прессовании // Кузнечно-штамповочное производство. Обработка материалов давлением. – 2001. – № 3. – С. 29–34.



13. Loginov Yu.N., Zamaraeva Yu.V., Komkova D.A. Strains under angular pressing of a strip from a cylindrical billet // Defect and Diffusion Forum. – 2021. – Vol. 410. – P. 80–84. – DOI: 10.4028/www.scientific.net/DDF.410.80.



14. Патент № 2050208 Российская Федерация, МПК B21C 25/02. Матричный узел для многоканального прессования: № 4949783/08: заявл. 25.06.1991: опубл. 20.12.1995 / В.Н. Данилин, С.Ф. Ворошилов, А.Г. Шиврин, В.Н. Щерба, И.Н. Потапов, В.П. Алешин, К.В. Рязанов; заявители и патентообладатели: Красноярское металлургическое производственное объединение, Московский институт стали и сплавов.



15. А. с. № 1292861 СССР, МПК В21С 25/00. Инструмент для обратного многониточного прессования: № 3815518: заявл. 17.10.1984: опубл. 28.02.1987, Бюл. № 8 / Б.Е. Хайкин, Ю.Н. Логинов, В.И. Шмелев, В.П. Алешин.



16. Патент № 2278758 Российская Федерация, МПК B21C 35/02. Устройство для создания натяжения при прессовании металлов: № 2005105190/02: заявл. 24.02.2005: опубл. 27.06.2006, Бюл. № 18 / С.П. Буркин, Ю.Н. Логинов; заявитель и патентообладатель Уральский государственный технический университет – УПИ.



17. Логинов Ю.Н., Волков А.Ю., Каменецкий Б.И. Анализ схемы неравноканального углового выдавливания применительно к получению листового магния в холодном состоянии // Известия вузов. Цветная металлургия. – 2019. – № 1. – С. 59–66. –DOI: 10.17073/0021-3438-2019-1-59-66.



18. Joost W.J., Krajewski P.E. Towards magnesium alloys for high-volume automotive applications // Scripta Materialia. – 2017. – Vol. 128. – P. 107–112. – DOI: 10.1016/j.scriptamat.2016.07.035.



19. Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits / J. Wang, Y. Wu, H. Li, Y. Liu, X. Bai, W. Wingho Chau, Y. Zheng, L. Qin // Biomaterials. – 2018. – Vol. 157. – P. 86–97. – DOI: 10.1016/j.biomaterials.2017.12.007.



20. Treatment of trauma-induced femoral head necrosis with biodegradable pure Mg screw-fixed pedicle iliac bone flap / L. Chen, Z. Lin, M. Wang, W. Huang, J. Ke, D. Zhao, Q. Yin, Y. Zhang // Journal of Orthopaedic Translation. – 2019. – Vol. 17. – P. 133–137. – DOI: 10.1016/j.jot.2019.01.004.



21. A new type of degradable setting ball for fracturing packers / Y. Zhang, L. Yu, Y. Ren, D. Yang, D. Feng // Well Testing. – 2018. – Vol. 27 (2). – P. 53–58. – DOI: 10.19680/j.cnki.1004-4388.2018.02.009.



22. Effects of Fe concentration on microstructure and corrosion of Mg-6Al-1Zn-xFe alloys for fracturing balls applications / C. Zhang, L. Wu, G. Huang, L. Chen, D. Xia, B. Jiang, A. Atrens, F. Pan // Journal of Materials Science and Technology. – 2019. – Vol. 35 (9). – P. 2086–2098. – DOI: 10.1016/j.jmst.2019.04.012.



23. Twinning characteristic and variant selection in compression of a pre-side-rolled Mg alloy sheet / B. Song, R. Xin, Y. Liang, G. Chen, Q. Liu // Materials Science and Engineering: A. – 2014. – Vol. 614. – P. 106–115. – DOI: 10.1016/j.msea.2014.07.026.



24. Nugmanov D.R., Sitdikov O.Sh., Markushev M.V. Structure of magnesium alloy MA14 after multistep isothermal forging and subsequent isothermal rolling // The Physics of Metals and Metallography. – 2015. – Vol. 116. – P. 993–1001. – DOI: 10.1134/S0031918X15080116.



25. Cepeda-Jiménez С.М., Molina-Aldareguia J.M., Pérez-Prado M.T. Origin of the twinning to slip transition with grain size refinement, with decreasing strain rate and with increasing temperature in magnesium // Acta Materialia. – 2015. – Vol. 88. – P. 232–244. – DOI: 10.1016/j.actamat.2015.01.032.



26. Fundamentals and advances in magnesium alloy corrosion / M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson // Progress in Materials Science. – 2017. – Vol. 89. – P. 92–193. – DOI: 10.1016/j.pmatsci.2017.04.011.



27. Volkov A.Yu., Kliukin I.V. Improving the mechanical properties of pure magnesium through cold hydrostatic extrusion and low-temperature annealing // Materials Science and Engineering: A. – 2015. – Vol. 624. – P. 56–60. – DOI: 10.1016/j.msea.2014.12.104.



28. Каменецкий Б.И., Логинов Ю.Н. Угловое прессование листовой заготовки магния из круглого слитка // Цветные металлы. – 2018. – № 9. – С. 77–81. – DOI: 10.17580/tsm.2018.09.12.

Благодарности. Финансирование

Финансирование:

Работа выполнена в рамках государственного задания по теме «Давление» № АААА-А18-118020190104-3.

 

Благодарности:

Исследования частично выполнены на оборудовании ЦКП «Структура, механические и физические свойства материалов» (соглашение с Минобрнауки № 13.ЦКП.21.0034).

Для цитирования:

Логинов Ю.Н., Замараева Ю.В. Оценка схемы многоканального углового прессования прутков и возможности ее применения на практике // Обработка металлов (технология, оборудование, инструменты). – 2023. – Т. 25, № 4. – С. 90–104. – DOI: 10.17212/1994-6309-2023-25.4-90-104.

For citation:

Loginov Yu.N., Zamaraeva Yu.V. Evaluation of the bars’ multichannel angular pressing scheme and its potential application in practice. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2023, vol. 25, no. 4, pp. 90–104. DOI: 10.17212/1994-6309-2023-25.4-90-104. (In Russian).

Просмотров: 442