Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 26, № 1 Январь - Март 2024

Модуль упругости и твердость титанового сплава, сформировавшегося в условиях электронного лучевого сплавления при 3D-печати проволокой

Том 25, № 4 Октябрь - Декабрь 2023
Авторы:

Клименов Василий Александрович,
Колубаев Евгений Александрович,
Хань Цзэли,
Чумаевский Андрей Валерьевич,
Двилис Эдгар Сергеевич,
Стрелкова Ирина Леонидовна,
Дробяз Екатерина Александровна,
Яременко Олег Борисович,
Куранов Александр Евгеньевич
DOI: http://dx.doi.org/10.17212/1994-6309-2023-25.4-180-201
Аннотация

Введение. Развитие и промышленное освоение аддитивных технологий зависит от многих факторов, среди которых немаловажную роль играет производительность процесса печати и коэффициент использования материала. Поэтому интерес к применению проволочных технологий в условиях печати все более привлекает внимание. Использование электронно-лучевых установок для этих целей является наиболее эффективным и конкурентноспособным в случае изготовления деталей из сплавов, обладающих повышенной окисляемостью (титан, нержавеющие стали и др.), так как процесс послойного сплавления происходит в вакууме. Применение для этих целей сварочной титановой проволоки типа ВТ6св представляется наиболее предпочтительным вследствие доступности и широкой номенклатуры по толщине. Однако одной из особенностей такого титанового сплава является его отличие по легирующим элементам (в меньшую сторону) в сравнении со сплавами типа ВТ6 и Ti-6Al-4V. Высокая производительность процесса печати проволокой и состав сплава ВТ6св влияют на особенность структурно-фазового состояния и свойств формирующегося сплава. Известно, что модуль упругости и твердость сплавов являются очень важными характеристиками, которые могут измеряться быстро, в том числе и с помощью методов неразрушающего контроля. Целью работы является исследование возможности применения различных методов измерения модуля упругости и контроля твердости для исследования образцов, напечатанных титановой проволокой ВТ6св на электронно-лучевой установке Института физики прочности и материаловедения СО РАН. Методы исследования образцов из титановых сплавов ВТ6св, полученных трехмерной печатью, и титановых сплавов типа ВТ1-0, ВТ6 и Ti-6Al-4V в разных структурных состояниях: металлографический анализ, исследование модуля упругости методом ультразвукового контроля, индентированием на макро- и микроуровнях, измерение твердости индентированием. Результаты и обсуждение. Установлено, что формирующийся при электронно-лучевой печати титановый сплав из проволоки ВТ6св имеет типичную столбчатую структуру, простирающуюся на всю высоту образца и сформировавшуюся при различных термических условиях в различных зонах при получении образца. Особенности формирования структуры обеспечивают особенности измеряемых значений модуля упругости и твердости в различных участках образца. Анализ полученных значений модуля упругости для напечатанного образца показал, что они несколько выше, чем значения модуля, полученные для сплавов в состоянии поставки типа Ti-6Al-4V, в то время как значения твердости, наоборот, оказались более низкими. Анализ данных по измерению модуля упругости методами индентирования показал, что получаемые значения при микроиндентировании более низкие, чем при макроиндентировании, которые близки к значениям, полученным с помощью ультразвука, а также к известным из других источников. Разница значений модулей упругости в различных пространственных участках напечатанного образца свидетельствует о структурно-фазовой чувствительности модуля упругости и демонстрирует возможности используемых в работе методов их измерения.


Ключевые слова: Электронно-лучевое сплавление проволоки, титановые сплавы, модуль упругости, методы индентирования, ультразвуковой контроль, твердость

Список литературы

1. Niinomi M. Mechanical properties of biomedical titanium alloys // Materials Science and Engineering: A. – 1998. – Vol. 243 (1–2). – P. 231–236. – DOI: 10.1016/s0921-5093(97)00806-x.



2. Milewski J.O. Additive manufacturing of metals: from fundamental technology to rocket nozzles, medical implants, and custom jewelry. – Cham: Springer, 2017. – 343 p. – ISBN 3319863487. – DOI: 10.1007/978-3-319-58205-4.



3. Metallurgy, mechanistic models and machine learning in metal printing / T. DebRoy, T. Mukherjee, H.L. Wei, J.W. Elmer, J.O. Milewski // Nature Reviews Materials. – 2021. – Vol. 6 (1). – P. 48–68. – DOI: 10.1038/s41578-020-00236-1.



4. Metal fabrication by additive manufacturing using laser and electron beam melting technologies / L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker // Journal of Materials Science and Technology. – 2012. – Vol. 28 (1). – P. 1–14. – DOI: 10.1016/S1005-0302(12)60016-4.



5. Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V / L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, R.B. Wicker // Materials Characterization. – 2009. – Vol. 60 (2). – P. 96–105. – DOI: 10.1016/j.matchar.2008.07.006.



6. Microstructure and mechanical properties of Ti?6Al?4V produced by electron beam melting of pre?alloyed powder / L. Facchini, E. Magalini, P. Robotti, A. Molinari // Rapid Prototyping Journal. – 2009. – Vol. 15 (3). – P. 171–178. – DOI: 10.1108/13552540910960262.



7. Beam speed effects on Ti–6Al–4V microstructures in electron beam additive manufacturing / X. Gong, J. Lydon, K. Cooper, K. Chou // Journal of Materials Research. – 2014. – Vol. 29 (17). – P. 1951–1959. – DOI: 10.1557/jmr.2014.125.



8. Surface modification of the EBM Ti-6Al-4V alloy by pulsed ion beam / N. Pushilina, E. Stepanova, A. Stepanov, M. Syrtanov // Metals. – 2021. – Vol. 11 (3). – P. 512. – DOI: 10.3390/met11030512.



9. Структурные и механические свойства нержавеющей стали, сформированной в условиях послойного сплавления проволоки электронным лучом / В.В. Фёдоров, А.В. Рыгин, В.А. Клименов, Н.В. Мартюшев, А.А. Клопотов, И.Л. Стрелкова, С.В. Матрёнин, А.В. Батранин, В.Н. Дерюшева // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 4. – С. 111–124. – DOI: 10.17212/1994-6309-2021-23.4-111-124.



10. Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing / H. Suo, Z. Chen, J. Liu, S. Gong, J. Xiao // Rare Metal Materials and Engineering. – 2014. – Vol. 43 (4). – P. 780–785. – DOI: 10.1016/s1875-5372(14)60083-7.



11. ASTM D2845-08. Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock (Withdrawn 2017). – ASTM International, 2008.



12. GB/T 38897-2020. Non-destructive testing – Measurement method for material elastic modulus and Poisson’s ratio using ultrasonic velocity / State Administration for Market Regulation, National Standardization Administration. – China, 2020. – 20 p. – In Chinese.



13. ГОСТ 25095–82. Сплавы твердые спеченные. Метод определения модуля упругости (модуля Юнга). – М.: Изд-во стандартов, 1982. – 10 с.



14. ГОСТ Р 57862–2017. Композиты. Определение динамического модуля упругости, модуля упругости при сдвиге и коэффициента Пуассона методом акустического резонанса. – М.: Стандартинформ, 2017. – 15 с.



15. ASTM E2546-15. Standard practice for instrumented indentation testing. – ASTM International, 2015.



16. ISO 14577-1:2015. Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 1: Test method. – ISO, 2015. – 46 p.



17. ГОСТ Р 8.748–2011. Металлы и сплавы. Измерение твердости и других характеристик материалов при инструментальном индентировании. Ч. 1. Метод испытаний. – М.: Стандартинформ, 2011. – 28 с.



18. GB/T 21838.1-2019. Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 1: Test method / State Administration for Market Regulation, National Standardization Administration. – China, 2019. – 40 p.



19. Wu S.-J., Chin P.-C., Liu H. Measurement of elastic properties of brittle materials by ultrasonic and indentation methods // Applied Sciences. – 2019. – Vol. 9 (10). – P. 2067. – DOI: 10.3390/app9102067.



20. Broitman E. Indentation hardness measurements at macro-, micro-, and nanoscale: A critical overview // Tribology Letters. – 2017. – Vol. 65 (1). – Art. 23. – DOI: 10.1007/s11249-016-0805-5.



21. Золоторевский В.С. Механические свойства металлов. – 3-e изд., перераб. и доп. – М.: МИСИС, 1998. – 400 с.



22. Young's modulus of nanocrystalline Fe measured by nanoindentation / G.E. Fougere, L. Riester, M. Ferber, J.R. Weertman, R.W. Siegel // Materials Science and Engineering: A. – 1995. – Vol. 204 (1–2). – P. 1–6. – DOI: 10.1016/0921-5093(95)09927-1.



23. Носкова Н.И., Мулюков Р.Р. Субмикрокристаллические и нанокристаллические металлы и сплавы. – Екатеринбург: УрОРАН, 2003. – 279 с.



24. Young’s modulus of titanium alloy VT6S and its structural sensitivity / R.Ya. Lutfullin, E.A. Trofimov, R.M. Kashaev, V.D. Sitdikov, T.R. Lutfullin // Letters on Materials. – 2017. – Vol. 7 (1). – P. 12–16. – DOI: 10.22226/2410-3535-2017-1-12-16.



25. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness / D.R. Sumner, T.M. Turner, R. Igloria, R.M. Urban, J.O. Galante // Journal of Biomechanics. – 1998. – Vol. 31 (10). – P. 909–917. – DOI: 10.1016/S0021-9290(98)00096-7.



26. Zhang L., Chen L. A review on biomedical titanium alloys: Recent progress and prospect // Advanced Engineering Materials. – 2019. – Vol. 21 (4). – P. 1801215. – DOI: 10.1002/adem.201801215.



27. Wang X., Gong X., Chou K. Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing // Procedia Manufacturing. – 2015. – Vol. 1. – P. 287–295. – DOI: 10.1016/j.promfg.2015.09.026.



28. Особенности структурно-фазового состояния сплава Ti-6Al-4V при формировании изделий с использованием электронно-лучевой проволочной аддитивной технологии / Н.Л. Савченко, А.В. Воронцов, В.Р. Утяганова, А.А. Елисеев, В.Е. Рубцов, Е.А. Колубаев // Обработка металлов (технология, оборудование, инструменты). – 2018. – Т. 20, № 4. – С. 60–71. – DOI: 10.17212/1994- 6309-2018-20.4-60-71.



29. Wire-feed electron beam additive manufacturing: A review / K. Osipovich, K. Kalashnikov, A. Chumaevskii, D. Gurianov, T. Kalashnikova, A. Vorontsov, A. Zykova, V. Utyaganova, A. Panfilov, A. Nikolaeva, A. Dobrovolskii, V. Rubtsov, E. Kolubaev // Metals. – 2023. – Vol. 13 (2). – P. 279. – DOI: 10.3390/met13020279.



30. Beam current effect on microstructure and properties of electron-beam-melted Ti-6Al-4V alloy / N.S. Pushilina, V.A. Klimenov, R.O. Cherepanov, E.B. Kashkarov, V.V. Fedorov, M.S. Syrtanov, A.M. Lider, R.S. Laptev // Journal of Materials Engineering and Performance. – 2019. – Vol. 28 (10). – P. 6165–6173. – DOI: 10.1007/s11665-019-04344-0.



31. Anomalously low modulus of the interpenetrating-phase composite of Fe and Mg obtained by liquid metal dealloying / I.V. Okulov, P.-A. Geslin, I.V. Soldatov, H. Ovri, S.-H. Joo, H. Kato // Scripta Materialia. – 2019. – Vol. 163. – P. 133–136. – DOI: 10.1016/j.scriptamat.2019.01.017.



32. Определение механических свойств металла кольцевых сварных соединений и основного металла труб методом инструментального индентирования / Т.Н. Белослудцев, А.Ю. Котоломов, С.Ю. Настич, В.А. Лопаткин, А.В. Шипилов, А.Е. Куранов, О.Б. Яременко // Газовая промышленность. – 2021. – Спец. вып. № 3 (823). – P. 26–36.



33. Яременко О.Б., Куранов А.Е., Васильцов С.Ю. Инструментальное индентирование как неразрушающий метод оценки механических характеристик конструкционных материалов // Живучесть и конструкционное материаловедение (ЖивКоМ – 2020): 5-я Международная научно-техническая конференция в дистанционном формате, Москва, 27–29 октября 2020 г. – М., 2020. – С. 274–278.



34. Influence of the coarse grain structure of a titanium alloy Ti-4Al-3V formed by wire-feed electron beam additive manufacturing on strain inhomogeneities and fracture / V. Klimenov, E. Kolubaev, K. Anatoly, A. Chumaevskii, A. Ustinov, I. Strelkova, V. Rubtsov, D. Gurianov, Z. Han, S. Nikonov, A. Batranin, M. Khimich // Materials. – 2023. – Vol. 16 (11). – P. 3901. – DOI: 10.3390/ma16113901.



35. ASTM E494-15. Standard practice for measuring ultrasonic velocity in materials. – ASTM International, 2015.



36. An instrumented indentation technique for estimating fracture toughness of ductile materials: A critical indentation energy model based on continuum damage mechanics / J.-S. Lee, J. Jang, B.-W. Lee, Y. Choi, S.G. Lee, D. Kwon // Acta Materialia. – 2006. – Vol. 54 (4). – P. 1101–1109. – DOI: 10.1016/j.actamat.2005.10.033.



37. Microstructures and mechanical properties of Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting / H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr, B.E. Stucker // Journal of Materials Engineering and Performance. – 2013. – Vol. 22 (12). – P. 3872–3883. – DOI: 10.1007/s11665-013-0658-0.



38. Microstructural control of additively manufactured metallic materials / P.C. Collins, D.A. Brice, P. Samimi, I. Ghamarian, H.L. Fraser // Annual Review of Materials Research. – 2016. – Vol. 46 (1). – P. 63–91. – DOI: 10.1146/annurev-matsci-070115-031816.



39. Liu S., Shin Y.C. Additive manufacturing of Ti-6Al-4V alloy: A review // Materials & Design. – 2019. – Vol. 164. – P. 107552. – DOI: 10.1016/j.matdes.2018.107552.



40. Ho W.F., Ju C.P., Chern Lin J.H. Structure and properties of cast binary Ti–Mo alloys // Biomaterials. – 1999. – Vol. 20 (22). – P. 2115–2122. – DOI: 10.1016/S0142-9612(99)00114-3.



41. Microstructure and compressive behavior of Ti-6Al-4V alloy built by electron beam free-form fabrication / V.A. Klimenov, V.V. Fedorov, M.S. Slobodyan, N.S. Pushilina, I.L. Strelkova, A.A. Klopotov, A.V. Batranin // Journal of Materials Engineering and Performance. – 2020. – Vol. 29 (11). – P. 7710–7721. – DOI: 10.1007/s11665-020-05223-9.



42. Zardiackas L.D., Mitchell D.W., Disegi J.A. Characterization of Ti-15Mo beta titanium alloy for orthopaedic implant applications // Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. – ASTM, 1996. – P. 60–75. – DOI: 10.1520/stp16070s. – (ASTM special technical publication; 1272).



43. Majumdar P., Singh S.B., Chakraborty M. Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques – A comparative study // Materials Science and Engineering: A. – 2008. – Vol. 489 (1–2). – P. 419–425. – DOI: 10.1016/j.msea.2007.12.029.



44. Справочник металлиста. В 5 т. Т. 2 / под ред. А.Г. Рахштадта и В.А. Брострема. – Изд. 3-е, перераб. – М.: Машиностроение, 1976. – 720 с.



45. Simonelli M., Tse Y.Y., Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V // Materials Science and Engineering: A. – 2014. – Vol. 616. – P. 1–11. – DOI: 10.1016/j.msea.2014.07.086.



46. Keist J.S., Palmer T.A. Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition // Materials & Design. – 2016. – Vol. 106. – P. 482–494. – DOI: 10.1016/j.matdes.2016.05.045.



47. Shunmugavel M., Polishetty A., Littlefair G. Microstructure and mechanical properties of wrought and additive manufactured Ti-6Al-4V cylindrical bars // Procedia Technology. – 2015. – Vol. 20. – P. 231–236. – DOI: 10.1016/j.protcy.2015.07.037.



48. Vickers hardness of cast commercially pure titanium and Ti-6Al-4V alloy submitted to heat treatments / S.S.d. Rocha, G.L. Adabo, G.E.P. Henriques, M.A.d.A. Nóbilo // Brazilian Dental Journal. – 2006. – Vol. 17 (2). – P. 126–129. – DOI: 10.1590/s0103-64402006000200008.



49. Additive manufactured Ti-6Al-4V using welding wire: Comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications / E. Brandl, B. Baufeld, C. Leyens, R. Gault // Physics Procedia. – 2010. – Vol. 5. – P. 595–606. – DOI: 10.1016/j.phpro.2010.08.087.



50. Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) / H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, P. Nandwana // Additive Manufacturing. – 2016. – Vol. 10. – P. 47–57. – DOI: 10.1016/j.addma.2016.02.003.

Благодарности. Финансирование

Финансирование:

Исследование выполнено при поддержке гранта Российского научного фонда № 23-79-00066, https://rscf.ru/project/23-79-00066/.

 

Благодарности:

В работе для исследований было использовано оборудование ЦКП НОИЦ НМНТ ТПУ, поддержанного проектом Минобрнауки России № 075-15-2021-710. В работе для исследований было использовано оборудование Центра коллективного пользования «Структура, механические и физические свойства материалов» Новосибирского государственного технического университета. Благодарим ведущего инженера ЛФУП ИФПМ СО РАН Никонова Сергея Юрьевича за печать образцов.

Для цитирования:

Модуль упругости и твердость титанового сплава, сформировавшегося в условиях электронного лучевого сплавления при 3D-печати проволокой / В.А. Клименов, Е.А. Колубаев, Ц. Хань, А.В. Чумаевский, Э.С. Двилис, И.Л. Стрелкова, Е.А. Дробяз, О.Б. Яременко, А.Е. Куранов // Обработка металлов (технология, оборудование, инструменты). – 2023. – Т. 25, № 4. – С. 180–201. – DOI: 10.17212/1994-6309-2023-25.4-180-201.

For citation:

Klimenov V.A., Kolubaev E.A., Han Z, Chumaevskii A.V., Dvilis E.S., Strelkova I.L., Drobyaz E.A., Yaremenko O.B., Kuranov A.E. Elastic modulus and hardness of Ti alloy obtained by wire-feed electron-beam additive manufacturing. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2023, vol. 25, no. 4, pp. 180–201. DOI: 10.17212/1994-6309-2023-25.4-180-201. (In Russian)

Просмотров: 463