Введение. Лазерная наплавка – одно из ведущих направлений в области аддитивных технологий, заключающееся в послойном наращивании материала при использовании лазера в качестве источника энергии. Для получения качественного изделия необходимо правильно подобрать оптимальные параметры выращивания. Проблема заключается в том, что такая оптимизация необходима для каждого оборудования, поскольку незначительные отличия в его характеристиках могут вносить существенные изменения в параметры послойного выращивания. Для того чтобы определить оптимальный режим выращивания, достаточно проанализировать влияние различных параметров оборудования на характеристики единичных треков. Поэтому цель данной работы заключается в определении наиболее важных параметров лазерного излучения, влияющих на процесс наплавки, и оптимального режима выращивания единичного трека хромоникелевой стали. В работе исследованы единичные треки, полученные лазерной наплавкой порошка из аустенитной хромоникелевой стали марки AISI 316L. В качестве факторов оптимизации выступали такие характеристики, как мощность лазера, скорость движения луча, расход подаваемого порошка и размер лазерного пятна. Длина волны лазерного излучения составляла 1,07 мкм. Методы исследования. Для определения качества и геометрических размеров одиночных треков исследовалась макроструктура поперечных сечений образцов с использованием методов металлографии и растровой электронной микроскопии. Результаты и обсуждение. Установлено, что оптимальный режим выращивания единичных треков стали 316L характеризуется мощностью лазерного излучения 1250 Вт и скоростью сканирования 25 мм/с. При этом оптимальный показатель расхода порошка составляет 12 г/мин, а размер лазерного пятна – 4,1 мм. В работе показано, что наибольшее влияние на коэффициент эффективного использования порошкового материала оказывают расход порошка и размер лазерного пятна. Их изменение позволяет повысить производительность наплавки на 10–15 %.
1. Gadagi B., Lekurwale R. A review on advances in 3D metal printing // Materials Today: Proceedings. – 2021. – Vol. 45. – P. 277–283. – DOI: 10.1016/j.matpr.2020.10.436.
2. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications / D. Svetlizky, M. Das, B. Zheng, A.L. Vyatskikh, S. Bose, A. Bandyopadhyay, J.M. Schoenung, E.J. Lavernia, N. Eliaz // Materials Today. – 2021. – Vol. 49. – P. 271–295. – DOI: 10.1016/j.mattod.2021.03.020.
3. Hardened austenite steel with columnar sub-grain structure formed by laser melting / K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen // Materials Science and Engineering: A. – 2015. – Vol. 625. – P. 221–229. – DOI: 10.1016/j.msea.2014.12.018.
4. 316L stainless steel mechanical and tribological behavior – A comparison between selective laser melting, hot pressing and conventional casting / F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva, G. Miranda // Additive Manufacturing. – 2017. – Vol. 16. – P. 81–89. – DOI: 10.1016/j.addma.2017.05.007.
5. Analysis of the process parameter influence in laser cladding of 316L stainless steel / P. Alvarez, M.Á. Montealegre, J.F. Pulido-Jiménez, J.I. Arrizubieta // Journal of Manufacturing and Materials Processing. – 2018. – Vol. 2 (3). – P. 55. – DOI: 10.3390/jmmp2030055.
6. Pinkerton A.J. Lasers in additive manufacturing // Optics & Laser Technology. – 2016. – Vol. 78. – P. 25–32. – DOI: 10.1016/j.optlastec.2015.09.025.
7. Goodarzi D.M., Pekkarinen J., Salminen A. Analysis of laser cladding process parameter influence on the clad bead geometry // Welding in the World. – 2017. – Vol. 61 (5). – P. 883–891. – DOI: 10.1007/s40194-017-0495-0.
8. Dutta B. Directed Energy Deposition (DED) Technology // Encyclopedia of Materials: Metals and Alloys. – 2022. – Vol. 3. – P. 66–84. – DOI: 10.1016/B978-0-12-819726-4.00035-1.
9. Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition / K. Shah, Izhar ul Haq, A. Khan, S.A. Shah, M. Khan, A.J. Pinkerton // Materials & Design. – 2014. – Vol. 54. – P. 531–538. – DOI: 10.1016/j.matdes.2013.08.079.
10. Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling / B.E. Carroll, R.A. Otis, J.P. Borgonia, J. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z.-K. Liu, A.M. Beese // Acta Materialia. – 2016. – Vol. 108. – P. 46–54. – DOI: 10.1016/j.actamat.2016.02.019.
11. Laser rapid manufacturing of stainless steel 316L/Inconel718 functionally graded materials: microstructure evolution and mechanical properties / D. Wu, X. Liang, Q. Li, L. Jiang // International Journal of Optics. – 2010. – Vol. 2010. – P. 802385. – DOI: 10.1155/2010/802385.
12. Development and characterization of 316L/Inconel 625 functionally graded material fabricated by laser direct metal deposition / B. Chen, Y. Su, Z. Xie, C. Tan, J. Feng // Optics & Laser Technology. – 2020. – Vol. 123. – P. 105916. – DOI: 10.1016/j.optlastec.2019.105916.
13. Interfacial characterization and mechanical properties of 316L stainless steel/inconel 718 manufactured by selective laser melting / X. Mei, X. Wang, Y. Peng, H. Gu, G. Zhong, Y. Sh // Material Science and Engineering: A. – 2019. – Vol. 758. – P. 185–191. – DOI: 10.1016/j.msea.2019.05.011.
14. Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process / H. El Cheikh, B. Courant, S. Branchu, J.-Y. Hascoët, R. Guillén // Optics and Laser in Engineering. – 2012. – Vol. 50 (3). – P. 413–422. – DOI: 10.1016/j.optlaseng.2011.10.014.
15. Effect of process parameters on the cladding track geometry fabricated by laser cladding / Y. Zhao, Ch. Guan, L. Chen, J. Sun, T. Yu // Optik. – 2020. – Vol. 223. – P. 165447. – DOI: 10.1016/j.ijleo.2020.165447.
16. An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by Directed Energy Deposition / A. Saboori, G. Piscopo, M. Lai, A. Salmi, S. Biamino // Materials Science and Engineering: A. – 2020. – Vol. 780. – P. 139179. – DOI: 10.1016/j.msea.2020.139179.
17. Self-heating behavior during cyclic loadings of 316L stainless steel specimens manufactured or repaired by Directed Energy Deposition / Y. Balit, L.-R. Joly, F. Szmytka, S. Durbecq, E. Charkaluk, A. Constantinescu // Materials Science and Engineering: A. – 2020. – Vol. 786. – P. 139476. – DOI: 10.1016/j.msea.2020.139476.
18. Tensile and ductile fracture properties of as-printed 316L stainless steel thin walls obtained by directed energy deposition / P. Margerit, D. Weisz-Patrault, K. Ravi-Chandar, A. Constantinescu // Additive Manufacturing. – 2021. – Vol. 37. – P. 101664. – DOI: 10.1016/j.addma.2020.101664.
19. Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach / E. Azinpour, R. Darabi, J.C. de Sa, A. Santos, J. Hodek, J. Dzugan // Finite Elements in Analysis and Design. – 2020. – Vol. 177. – P. 103417. – DOI: 10.1016/j.finel.2020.103417.
20. Effect of build height on the properties of large format stainless steel 316L fabricated via directed energy deposition / D.R. Feenstra, V. Cruz, X. Gao, A. Molotnikov, N. Birbilis // Additive Manufacturing. – 2020. – Vol. 34. – P. 101205. – DOI: 10.1016/j.addma.2020.101205.
21. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel / Y. Hwa, Ch.S. Kumai, Th.M. Devine, N. Yang, J.K. Yee, R. Hardwick, K. Burgmann // Journal of Materials Science & Technology. – 2021. – Vol. 69. – P. 96–105. – DOI: 10.1016/j.jmst.2020.08.022.
22. Characterisation of porosity, density, and microstructure of directed energy deposited stainless steel AISI 316L / Z.E. Tan, J.H. Lye Pang, J. Kaminski, H. Pepin // Additive Manufacturing. – 2019. – Vol. 25. – P. 286–296. – DOI: 10.1016/j.addma.2018.11.014.
23. Mukherjee M. Effect of build geometry and orientation on microstructure and properties of additively manufactured 316L stainless steel by laser metal deposition // Materialia. – 2019. – Vol. 7. – P. 100359. – DOI: 10.1016/j.mtla.2019.100359.
24. Dutta B., Babu S., Jared B.H. Science, technology and applications of metals in additive manufacturing. – Elsevier, 2019. – 343 p. – ISBN 978-0-12-816634-5. – DOI: 10.1016/C2017-0-04707-9.
25. Справочник по специальным работам: сварочные работы в строительстве. В 2 ч. Ч. 1 / под ред. В.Д. Тарана. – 2-е изд., испр. и доп. – М.: Стройиздат, 1971. – 415 с.
26. Влияние технологических параметров на производительность при изготовлении металлических деталей методом прямого лазерного выращивания / Ю.Н. Завалов, А.В. Дубров, П.С. Родин, А.Н. Антонов, Е.С. Макарова, С.В. Стенькин, В.Д. Дубров // Аддитивные технологии: настоящее и будущее: материалы V Международной конференции, 22 марта 2019 г. – М.: ВИАМ, 2019. – С. 121–130.
Работа выполнена в рамках государственного задания ИТПМ СО РАН.
Влияние режимов лазерной наплавки на геометрические размеры стального трека / С.В. Долгова, А.Г. Маликов, А.А. Голышев, А.А. Никулина // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 2. – С. 57–70. – DOI: 10.17212/1994-6309-2024-26.2-57-70.
Dolgova S.V., Malikov A.G., Golyshev A.A., Nikulina A.A. The effect of laser surfacing modes on the geometrical characteristics of the single laser tracks. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 2, pp. 57–70. DOI: 10.17212/1994-6309-2024-26.2-57-70. (In Russian).