Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 26, № 3 Июль - Сентябрь 2024

Износостойкость и коррозионное поведение Cu-Ti-покрытий в растворе SBF

Том 26, № 3 Июль - Сентябрь 2024
Авторы:

Бурков Александр Анатольевич,
Дворник Максим Иванович,
Кулик Мария Андреевна,
Быцура Александра Юрьевна
DOI: http://dx.doi.org/10.17212/1994-6309-2024-26.3-234-249
Аннотация

Введение. В настоящее время титан и его сплавы стали наиболее популярными металлическими имплантируемыми биоматериалами. Однако главным недостатком титановых сплавов является низкая износостойкость по причине высокой вязкости. Известно, что медно-титановые покрытия эффективно улучшают антибактериальные свойства титанового сплава и при этом повышают его износостойкость. Цель работы: изучение влияния раствора, имитирующего жидкость организма (SBF), на коррозионные свойства, коэффициент трения и интенсивность изнашивания медно-титановых покрытий, полученных методом электроискрового легирования на титановом сплаве Ti6Al4V. Методы исследования. Медно-титановые покрытия были приготовлены на титановом сплаве методом электроискрового легирования с использованием нелокализованного электрода, состоящего из медных и титановых гранул в различных соотношениях. Фазовый состав покрытий изучался с помощью рентгеновского дифрактометра ДРОН-7 в Cu-Kα-излучении. Антисептическую активность приготовленных покрытий изучали на грамотрицательной культуре Escherichia coli. Потенциодинамические испытания проводились в растворе SBF с использованием потенциостата Р-40Х с модулем измерения импеданса. Содержание металлов в растворе SBF после погружения образцов измеряли с помощью масс-спектрометра ICP-MS 2000. Трибологическое поведение покрытий исследовалось в растворе SBF согласно стандарту ASTM G99-17 по схеме «шар на диске» при нагрузках 10 и 25 Н. Исследование микроструктуры поверхности изношенных покрытий проведено на растровом электронном микроскопе Vega 3 LMH. Энергодисперсионный спектрометр X-max 80 использовался для микроанализа поверхности образцов после испытания на изнашивание. Результаты и обсуждение. Показано, что бактерицидная активность медно-титановых покрытий к непатогенной культуре Escherichia coli монотонно повышалась с ростом содержания меди. С ростом концентрации меди плотность тока коррозии покрытий повышалась от 3,455 до 17,570 мкА/см2. Показано, что раствор SBF многократно ускоряет износ титанового сплава вследствие его взаимодействия с электролитом по механизму окислительного изнашивания. Применение Cu-Ti-покрытий позволяет уменьшить коэффициент трения и многократно снизить износ титанового сплава Ti6Al4V в условиях присутствия электролита.


Ключевые слова: Cu-Ti-покрытие, электроискровое легирование, раствор SBF, коэффициент трения, коррозия, износ

Список литературы

1. Ti based biomaterials, the ultimate choice for orthopaedic implants – a review / M. Geetha, A. Singh, R. Asokamani, A. Gogia // Progress in Materials Science. – 2009. – Vol. 54. – P. 397–425. – DOI: 10.1016/j.pmatsci.2008.06.004.



2. Gepreel M.A.H., Niinomi M. Biocompatibility of Ti-alloys for long-term implantation // Journal of the Mechanical Behavior of Biomedical Materials. – 2013. – Vol. 20. – P. 407–415. – DOI: 10.1016/j.jmbbm.2012.11.014.



3. Ti6Al4V coatings on titanium samples by sputtering techniques: Microstructural and mechanical characterization / J.C. Sánchez-López, M. Rodríguez-Albelo, M. Sánchez-Pérez, V. Godinho, C. López-Santos, Y. Torres // Journal of Alloys and Compounds. – 2023. – Vol. 952. – P. 170018. – DOI: 10.1016/j.jallcom.2023.170018.



4. Involvement of in vivo induced cheY-4 gene of Vibrio cholerae in motility, early adherence to intestinal epithelial cells and regulation of virulence factors / R. Banerjee, S. Das, K. Mukhopadhyay, S. Nag, A. Chakrabortty, K. Chaudhuri // FEBS Letters. – 2002. – Vol. 532. – P. 221–226. – DOI: 10.1016/S0014-5793(02)03678-5.



5. Macrophages related to dental implant failure / D. Olmedo, M.M. Fernández, M.B. Guglielmotti, R.L. Cabrini, M.M. Fernández, M.B. Guglielmotti, R.L. Cabrini // Implant Dentistry. – 2003. – Vol. 12. – P. 75–80. – DOI: 10.1097/01.ID.0000041425.36813.A9.



6. Antibacterial coatings on titanium implants / L. Zhao, P.K. Chu, Y. Zhang, Z. Wu // Journal of Biomedical Materials Research. Part B: Applied Biomaterials. – 2009. – Vol. 91. – P. 470–480. – DOI: 10.1002/jbm.b.31463.



7. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design / J. Tian, K. Xu, J. Hu, S. Zhang, G. Cao, G. Shao // Journal of Materials Science & Technology. – 2021. – Vol. 79. – P. 62–74. – DOI: 10.1016/j.jmst.2020.11.038.



8. Tribocorrosion behavior of antibacterial Ti–Cu sintered alloys in simulated biological environments / J.Q. Zhang, S. Cao, Y. Liu, M.M. Bao, J. Ren, S.Y. Li, J.J. Wang // Rare Metals. – 2022. – Vol. 41. – P. 1921–1932. – DOI: 10.1007/s12598-021-01943-6.



9. Preparation of multicomponent thin films by magnetron co-sputtering method: The Cu-Ti case study / B. Adamiak, A. Wiatrowski, J. Domaradzki, D. Kaczmarek, D. Wojcieszak, M. Mazur // Vacuum. – 2019. – Vol. 161. – P. 419–428. – DOI: 10.1016/j.vacuum.2019.01.012.



10. Microstructure, corrosion and tribological and antibacterial properties of Ti–Cu coated stainless steel / X. Jin, L. Gao, E. Liu, F. Yu, X. Shu, H. Wang // Journal of the Mechanical Behavior of Biomedical Materials. – 2015. – Vol. 50. – P. 23–32. – DOI: 10.1016/j.jmbbm.2015.06.004.



11. Influence of Cu–Ti thin film surface properties on antimicrobial activity and viability of living cells / D. Wojcieszak, D. Kaczmarek, A. Antosiak, M. Mazur, Z. Rybak, A. Rusak, B. Szponar // Materials Science and Engineering: C. – 2015. – Vol. 56. – P. 48–56. – DOI: 10.1016/j.msec.2015.06.013.



12. Effects of the prefabricated Cu-Ti film on the microstructure and mechanical properties of the multiphase coating by thermo plasma nitriding on C17200 Cu alloy / Y. Zhu, M. Yan, Q. Zhang, Q. Wang, H. Zhuo // Coatings. – 2019. – Vol. 9. – P. 694. – DOI: 10.3390/coatings9110694.



13. Wang Z.Q., Wang X.R. Microstructure and flame-retardant properties of Ti-Cu coating on Tc11 prepared via electrospark deposition // Material Engineering and Mechanical Engineering: Proceedings of Material Engineering and Mechanical Engineering (MEES 2015). – World Scientific, 2016. – P. 1283–1291. – DOI: 10.1142/9789814759687_0144.



14. Radek N. Experimental investigations of the Cu-Mo and Cu-Ti electro-spark coatings modified by laser beam // Advances in Manufacturing Science and Technology. – 2008. – Vol. 32. – P. 53–68.



15. Kayali Yu., Yalçin M.C., Buyuksagis A. Effect of electro spark deposition coatings on surface hardness and corrosion resistance of ductile iron // Canadian Metallurgical Quarterly. – 2023. – Vol. 62. – P. 483–496. – DOI: 10.1080/00084433.2022.2119039.



16. In-situ TIC-reinforced NI-based composite coatings fabricated by ultrasonic-assisted electrospark powder deposition / H. Zhao, Ch. Gao, Ch. Guo, B. Xu, X.Yu. Wu, J.G. Lei // Journal of Asian Ceramic Societies. – 2023. – Vol. 11. – P. 26–38. – DOI: 10.1080/21870764.2022.2142368.



17. Burkov A.A., Pyachin S.A. Formation of WC–Co coating by a novel technique of electrospark granules deposition // Materials & Design. – 2015. – Vol. 80. – P. 109–115. – DOI: 10.1016/j.matdes.2015.05.008.



18. Бурков А.А. Получение аморфных покрытий электроискровой обработкой стали 35 в смеси железных гранул с CrMoWCBSi порошком // Обработка металлов (технология, оборудование, инструменты). – 2019. – Т. 21, № 4. – С. 19–30. – DOI: 10.17212/1994-6309-2019-21.4-19-30.



19. Burkov A.A., Kulik M.A. Wear-resistant and anticorrosive coatings based on chrome carbide Cr7C3 obtained by electric spark deposition // Protection of Metals and Physical Chemistry of Surfaces. – 2020. – Vol. 56. – P. 1217–1221. – DOI: 10.1134/S2070205120060064.



20. Бурков А.А. Одностадийное осаждение Ti–Cu покрытия электроискровой обработкой титанового сплава Ti6Al4V анодом из медных и титановых гранул // Фундаментальные проблемы современного материаловедения. – 2023. – Т. 20. – С. 372–380. – DOI: 10.25712/ASTU.1811-1416.2023.03.010.



21. Burkov A.A., Chigrin P.G., Dvornik M.I. Electrospark CuTi coatings on titanium alloy Ti6Al4V: corrosion and wear properties // Surface and Coatings Technology. – 2023. – Vol. 469. – P. 129796. – DOI: 10.1016/j.surfcoat.2023.129796.



22. Durdu S., Usta M., Berkem A.S. Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation // Surface and Coatings Technology. – 2016. – Vol. 301. – P. 85–93. – DOI: 10.1016/j.surfcoat.2023.129796.



23. Comparative analysis of insulating properties of plasma and thermally grown alumina films on electrospark aluminide coated 9Cr steels / N.I. Jamnapara, S. Frangini, J. Alphonsa, N.L. Chauhan, S. Mukherjee // Surface and Coatings Technology. – 2015. – Vol. 266. – P. 146–150. – DOI: 10.1016/j.surfcoat.2015.02.028.



24. On the selection of Ti–Cu alloys for thixoforming processes: phase diagram and microstructural evaluation / K.N. Campo, D.D. de Lima, É.S.N. Lopes, R. Caram // Journal of Materials Science. – 2015. – Vol. 50. – P. 8007–8017.



25. Fan Y., Fan J., Wang C. Formation of typical Ti–Cu intermetallic phases via a liquid-solid reaction approach // Intermetallics. – 2019. – Vol. 113. – P. 106577. – DOI: 10.1016/j.intermet.2019.106577.



26. Effect of temperature on morphology and wear of a Cu-Ti-TiC MMC sintered by abnormal glow discharge / C.D. Bohórquez, S.P. Pérez, A. Sarmiento, M.E. Mendoza // Materials Research Express. – 2020. – Vol. 7. – P. 026501. – DOI: 10.1088/2053-1591/ab6e3b.



27. A study of the electrochemical formation of Cu(I)-BTA films on copper electrodes and the mechanism of copper corrosion inhibition in aqueous chloride/benzotriazole solutions / A.D. Modestov, G.D. Zhou, Y.P. Wu, T. Notoya, D.P. Schweinsberg // Corrosion Science. – 1994. – Vol. 36. – P. 1931–1946. – DOI: 10.1016/0010-938X(94)90028-0.



28. Rosalbino F., Scavino G. Corrosion behaviour assessment of cast and HIPed Stellite 6 alloy in a chloride-containing environment // Electrochimica Acta. – 2013. – Vol. 111. – P. 656–662. – DOI: 10.1016/j.electacta.2013.08.019.



29. Study on the technology of surface strengthening Ti–6Al–4V alloy by near-dry multi-flow channel electrode electrical discharge machining / Y. Ding, L. Kong, W. Lei, Q. Li, K. Ding, Y. He // Journal of Materials Research and Technology. – 2024. – Vol. 28. – P. 2219–2234. – DOI: 10.1016/j.jmrt.2023.12.133.



30. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys / S. Guo, Y. Lu, S. Wu, L. Liu, M. He, C. Zhao, J. Lin // Materials Science and Engineering: C. – 2017. – Vol. 72. – Р. 631–640. – DOI: 10.1016/j.msec.2016.11.126.



31. Corrosion mechanisms in titanium oxide-based films produced by anodic treatment / A.C. Alves, F. Wenger, P. Ponthiaux, J.P. Celis, A.M. Pinto, L.A. Rocha, J.C.S. Fernandes // Electrochimica Acta. – 2017. – Vol. 234. – Р. 16–27. – DOI: 10.1016/j.electacta.2017.03.011.



32. Improvement in antibacterial ability and cell cytotoxicity of Ti–Cu alloy by anodic oxidation / S. Cao., Z.M. Zhang, J.Q. Zhang, R.X. Wang, X.Y. Wang, L. Yang, E.L. Zhang // Rare Metals. – 2022. – Vol. 41. – P. 594–609. – DOI: 10.1007/s12598-021-01806-0.



33 Enhanced antibacterial activity of Ti-Cu alloy by selective acid etching / M. Lu, Z. Zhang, J. Zhang, X. Wang, G. Qin, E. Zhang // Surface and Coatings Technology. – 2021. – Vol. 421. – P. 127478. – DOI: 10.1016/j.surfcoat.2021.127478.



34. Guidelines for drinking-water quality. – World Health Organization, 2002.



35. Ren L., Yang K. Antibacterial design for metal implants // Metallic Foam Bone. – Woodhead Publishing, 2017. – P. 203–216. – DOI: 10.1016/B978-0-08-101289-5.00008-1.



36. Kaplan Y., Is?tan A. Tribological behavior of borided Ti6Al4V alloy under simulated body fluid conditions // Acta Physica Polonica A. – 2018. – Vol. 134. – P. 271–274. – DOI: 10.12693/APhysPolA.134.271.



37. Microstructure and wear behaviors of TiB/TiC reinforced Ti2Ni/a(Ti) matrix coating produced by laser cladding / J.Z. Shao, J. Li, R. Song, L.L. Bai, J.L. Chen, C.C. Qu // Rare Metals. – 2020. – Vol. 39. – P. 304–31. – DOI: 10.1007/s12598-016-0787-3.

Благодарности. Финансирование

Работа выполнена за счет средств гранта Российского научного фонда № 23-23-00032.

Для цитирования:

Износостойкость и коррозионное поведение Cu-Ti-покрытий в растворе SBF / А.А. Бурков, М.А. Дворник, М.А. Кулик, А.Ю. Быцура // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 3. – С. 234–249. – DOI: 10.17212/1994-6309-2024-26.3-234-249.

For citation:

Burkov A.A., Dvornik M.A., Kulik M.A., Bytsura A.Yu. Wear resistance and corrosion behavior of Cu-Ti coatings in SBF solution. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 3, pp. 234– 249. DOI: 10.17212/1994-6309-2024-26.3-234-249. (In Russian).

Просмотров: 379