Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 27, № 1 Январь - Март 2025

Структура заготовок из сплава инконель 625, полученных электродуговой наплавкой и наплавкой с помощью электронного луча

Том 26, № 4 Октябрь - Декабрь 2024
Авторы:

Болтрушевич Александр Евгеньевич,
Мартюшев Никита Владимирович,
Козлов Виктор Николаевич,
Кузнецова Юлия Сергеевна
DOI: http://dx.doi.org/10.17212/1994-6309-2024-26.4-206-217
Аннотация

Введение. Развитие обрабатывающей промышленности привело к появлению новых методов изготовления заготовок и деталей. Одним из таких новых перспективных методов является аддитивное производство, в частности технологии электродуговой и электронно-лучевой наплавки проволокой. Применение этих технологий при производстве заготовок из жаропрочных материалов дает ряд существенных преимуществ. В работе представлены результаты исследования микроструктуры образцов из инконеля марки 625. Образцы были изготовлены путем 3D-наплавки электронным лучом в вакууме и электродуговой наплавки в среде защитных газов. Цель работы: сравнительный анализ микроструктуры заготовок из никелевого сплава инконель 625, полученных с помощью технологий EBAM и WAAM. Методы и материалы. Используемые в работе образцы изготавливались на оборудовании, разработанном в Томском политехническом университете. Проводились металлографические исследования и растровая электронная микроскопия, была определена микротвердость полученных образцов. Результаты и обсуждение. Сравнение образцов, полученных по двум различным технологиям аддитивной печати – EBAM и WAAM, показало общие закономерности формирования структуры, появляющиеся при использовании аддитивных технологий. У образцов наблюдалась дендритная микроструктура, в образцах присутствовали зоны, богатые Ti, Mo и Nb, что характерно для неравновесного охлаждения. В образцах также наблюдались поры. Зерна в образцах имели преимущественно вытянутую форму и ориентировались в направлении теплоотвода. Длина зерен достигала значений 1 мм. Различия в образцах наблюдались в количестве образующихся включений интерметаллидов, в количестве образовавшихся пор и в размере зерен. Технология EBAM дает более однородную структуру. Различие в твердости между EBAM и WAAM составляет около 3,5 %. При этом скорость изготовления образцов по технологии WAAM существенно выше.


Ключевые слова: Аддитивные технологии, Инконель 625, электродуговая наплавка, электронно-лучевая наплавка, микроструктура

Список литературы

1. Alvarez L.F., Garcia C., Lopez V. Continuous cooling transformations in martensitic stainless steels // ISIJ International. – 1994. – vol. 34 (6). – P. 516–521. – DOI: 10.2355/isijinternational.34.516.



2. Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment / C. Li, R. White, X. Fang, M. Weaver, Y. Guo // Materials Science and Engineering: A. – 2017. – Vol. 705. – P. 20–31.



3. Liverani E., Fortunato A. Additive manufacturing of AISI 420 stainless steel: process validation, defect analysis and mechanical characterization in different process and post-process conditions // The International Journal of Advanced Manufacturing Technology. – 2021. – Vol. 117 (3–4). – P. 809–821. – DOI: 10.1007/s00170-021-07639-6.



4. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting / S. Li, Q. Wei, Y. Shi, Z. Zhu, D. Zhang // Journal of Materials Science & Technology. – 2015. – Vol. 31. – P. 946–952.



5. Formation of the Ni3Nb δ-phase in stress-relieved Inconel 625 produced via laser powder-bed fusion additive manufacturing / E.A. Lass, M.R. Stoudt, M.E. Williams, M.B. Katz, L.E. Levine, T.Q. Phan, T.H. Gnaeupel-Herold, D.S. Ng // Metallurgical and Materials Transactions: A. – 2017. – Vol. 48. – P. 5547–5558. – DOI: 10.1007/s11661-017-4304-6.



6. Characterization and comparison of Inconel 625 processed by selective laser melting and laser metal deposition / G. Marchese, X.G. Colera, F. Calignano, M. Lorusso, S. Biamino, P. Minetola, D. Manfredi // Advanced Engineering Materials. – 2016. – Vol. 19. – P. 1–9. – DOI: 10.1002/adem.201600635.



7. Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition / F. Xu, Y. Lv, B. Xu, Y. Liu, F. Shu, P. He // Materials & Design. – 2013. – Vol. 45. – P. 446–455.



8. Grzesik W. Hybrid additive and subtractive manufacturing processes and systems: a review // Journal of Machine Engineering. – 2018. – vol. 18 (4). – p. 5–24. – DOI: 10.5604/01.3001.0012.7629.



9. Integrated quality ensuring technique of plasma wear resistant coatings / E. Zverev, V. Skeeba, N.V. Martyushev, P. Skeeba // Key Engineering Materials. – 2017. – vol. 736. – p. 132–137. – DOI: 10.4028/www.scientific.net/KEM.736.132.



10. Dang J., Zhang H., Ming W. New observations on wear characteristics of solid Al2O3/Si3N4 ceramic tool in high speed milling of additive manufactured Ti6Al4V // Ceramics International. – 2020. – vol. 46 (5). – p. 5876–5886. – DOI: 10.1016/j.ceramint.2019.11.039.



11. Influence of shielding gas composition on structure and mechanical properties of wire and arc additive manufactured Inconel 625 / I. Juric, I. Garašic, M. Bušic, Z. Kozuh // JOM. – 2018. – Vol. 71. – P. 703–708. – DOI: 10.1007/s11837-018-3151-2.



12. The features of steel surface hardening with high energy heating by high frequency currents and shower cooling / V. Ivancivsky, V. Skeeba, I. Bataev, D.V. Lobanov // IOP Conference Series: Materials Science and Engineering. – 2016. – vol. 156. – p. 012025. – DOI: 10.1088/1757-899X/156/1/012025.



13. Keist J.S., Palmer T.A. Development of strength-hardness relationships in additively manufactured titanium alloys // Materials Science and Engineering: A. – 2017. – Vol. 693. – P. 214–224. – DOI: 10.1016/j.msea.2017.03.102.



14. Balovtsev S.V., Merkulova A.M. Comprehensive assessment of buildings, structures and technical devices reliability of mining enterprises // Горный информационно-аналитический бюллетень. – 2024. – № 3. – С. 170–181. – DOI: 10.25018/0236_1493_2024_3_0_170.



15. Cutting forces analysis in additive manufactured AISI H13 alloy / F. Montevecchi, N. Grossi, H. Takagi, A. Scippa, H. Sasahara, G. Campatelli // Procedia CIRP. – 2016. – Vol. 46. – P. 476–479. – DOI: 10.1016/j.procir.2016.04.034.



16. Microstructure and fracture behavior of TiC particles reinforced Inconel 625 composites prepared by laser additive manufacturing / M.Y. Shen, X.J. Tian, N. Liu, H.B. Tang, X. Cheng // Journal of Alloys and Compounds. – 2018. – Vol. 734. – P. 188–195. – DOI: 10.1016/j.jallcom.2017.10.280.



17. Gong Y., Li P. Analysis of tool wear performance and surface quality in post milling of additive manufactured 316L stainless steel // Journal of Mechanical Science and Technology. – 2019. – Vol. 33. – P. 2387–2395. – DOI: 10.1007/s12206-019-0237-x.



18. Ni Ch., Zhu L., Yang Zh. Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti–6Al–4V from dynamic view // Wear. – 2019. – Vol. 436. – p. 203006. – DOI: 10.1016/j.wear.2019.203006.



19. Xiong X., Haiou Z., Guilan W. A new method of direct metal prototyping: hybrid plasma deposition and milling // Rapid Prototyping Journal. – 2008. – Vol. 14 (1). – P. 53–56. – DOI: 10.1108/13552540810841562.



20. Nekrasova T.V., Melnikov A.G. Creation of ceramic nanocomposite material on the basis of ZrO2-Y2O3-Al2O3 with improved operational properties of the working surface // Applied Mechanics and Materials. – 2013. – Vol. 379. – P. 77–81. – DOI: 10.4028/www.scientific.net/AMM.379.77.



21. Martyushev N., Petrenko Yu. Effects of crystallization conditions on lead tin bronze properties // Advanced Materials Research. – 2014. – Vol. 880. – P. 174–178. – DOI: 10.4028/www.scientific.net/AMR.880.174.



22. Повышение ресурса рабочих колес центробежных насосов шахтного водоотлива / В.В. Зотов, В.У. Мнацаканян, М.М. Базлин, В.С. Лакшинский, Е.В. Дятлова // Горная промышленность. – 2024. – № 2. – С. 143–146. – DOI: 10.30686/1609-9192-2024-2-143-146.



23. Усанова О.Ю., Столяров В.В., Рязанцева А.В. Исследование свойств ионно-имплантированного титанового сплава с памятью формы, используемого в конструкциях горнодобывающего оборудования // Устойчивое развитие горных территорий. – 2022. – Т. 14, № 4. – С. 695–701. – DOI: 10.21177/1998-4502-2022-14-4-695-701.



24. Cahoon J.R., Broughton W.H., Kutzak A.R. The determination of yield strength from hardness measurements // Metallurgical Transactions. – 1971. – Vol. 2 (7). – P. 1979–1983. – DOI: 10.1007/bf02913433.



25. Change in the properties of rail steels during operation and reutilization of rails / K. Yelemessov, D. Baskanbayeva, N.V. Martyushev, V.Y. Skeeba, V.E. Gozbenko, A.I. Karlina // Metals. – 2023. – Vol. 13. – P. 1043. – DOI: 10.3390/met13061043.



26. Lou X., Andresen P.L., Rebak R.B. Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior // Journal of Nuclear Materials. – 2018. – Vol. 499. – P. 182–190. – DOI: 10.1016/j.jnucmat.2017.11.036.



27. Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing / X. Chen, J. Li, X. Cheng, H. Wang, Z. Huang // Materials Science and Engineering: A. – 2018. – Vol. 715. – P. 307–314. – DOI: 10.1016/j.msea.2017.10.002.



28. Яценко В.А., Крюков Я.В. Фрагментация и консолидация производственных цепочек в мировой редкоземельной промышленности // Горная промышленность. – 2022. – № 1. – С. 66–74. – DOI: 10.30686/1609-9192-2022-1-66-74.



29. Pashkov E.N., Martyushev N.V., Ponomarev A.V. An investigation into autobalancing devices with multireservoir system // IOP Conference Series: Materials Science and Engineering. – 2014. – Vol. 66 (1). – P. 012014. – DOI: 10.1088/1757-899X/66/1/012014.



30. Хайдоров А.Д., Юнусов Ф.А. Вакуумная термическая обработка высоколегированных коррозионностойких сталей // Научно-технические ведомости СПбГПУ. – 2017. – Т. 23, № 1. – С. 226–235.



31. Rationalization of microstructure heterogeneity in INCONEL 718 builds made by the direct laser additive manufacturing process / Y. Tian, D. McAllister, H. Colijn, M. Mills, D.F. Farson, M. Nordin, S.S. Babu // Metallurgical and Materials Transactions: A. – 2014. – Vol. 45. – P. 4470–4483. – DOI: 10.1007/s11661-014-2370-6.



32. Кречетов А.А. Обеспечение качества сварных соединений армокаркаса анкерной крепи путем роботизации производства // Горная промышленность. – 2021. – № 3. – C. 130–134. – DOI: 10.30686/1609-9192-2021-3-130-134.



33. The resource efficiency assessment technique for the foundry production / I.G. Vidayev, N.V. Martyushev, A.S. Ivashutenko, A.M. Bogdan // Advanced Materials Research. – 2014. – Vol. 880. – P. 141–145. – DOI: 10.4028/www.scientific.net/AMR.880.141.

Благодарности. Финансирование

Финансирование

Данное исследование было поддержано программой развития ТПУ.

 

Благодарности

Исследования выполнены на оборудовании ИЦ «Проектирование и производство высокотехнологичного оборудования» и ЦКП «Структура, механические и физические свойства материалов».

Для цитирования:

Структура заготовок из сплава инконель 625, полученных электродуговой наплавкой и наплавкой с помощью электронного луча / А.Е. Болтрушевич, Н.В. Мартюшев, В.Н. Козлов, Ю.С. Кузнецова // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 4. – С. 206–217. – DOI: 10.17212/1994-6309-2024-26.4-206-217.

For citation:

Boltrushevich A.E., Martyushev N.V., Kozlov V.N., Kuznetsova Yu.S. Structure of Inconel 625 alloy blanks obtained by electric arc surfacing and electron beam surfacing. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 4, pp. 206–217. DOI: 10.17212/1994-6309-2024-26.4-206-217. (In Russian).

Просмотров: 456