Abstract
Is investigated the accuracy of the transition from a continuous system to a discrete system for various variants of approximation of continuous links with discrete ones, as well as the magnitude of the sampling step and the degree of turn aside of the structural scheme of the system. The research is conducted on the example of a system consisting of an object and two proportional-integral-differential regulators.In our case, the object is unstable, representing an inverted pendulum on a trolley with one input and two outputs.The first regulator stabilizes the angle of deviation of the pendulum, and the second regulator fulfills the predetermined position of the trolley.This system is considered in many works, and in our case we consider the transition from a continuous system to a discrete one and is analyzed the discrepancy of transient processes.To switch from a continuous system to a discrete one, you can use several methods.For example, replace the integrator block on a discrete block by using the "zoh" commands – zero order hold and "foh" – fast order hold for different sampling steps.Are shown transitional processes of a continuous and discrete system are given. Also, is shown transition process to the system in the case of use transfer functions of the entire system "input-output" to discrete ones.When sampling, simulation errors are not significant.When the folding of the structural scheme, sampling errors decrease. Also, with a decrease in the sampling step, errors are reduced.
Keywords: unstable object, continuous system, discrete system, approximations foh and zoh, transient process, sampling error, sampling step
References
1. Voevoda A.A., Shoba E.V. Upravlenie perevernutym mayatnikom [Man-agement of the inverted pendulum]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2012, no. 2 (68), pp. 3–14.
2. Bobobekov K.M. Model' perevernutogo mayatnika: chastnye sluchai [The model of the inverted pendulum: special cases]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2015, no. 3 (81), pp. 21–42.
3. Troshina G.V., Voevoda A.A., Bobobekov K.M. The periodic signals application for the estimation of the unstable object parameters. Journal of Physics: Conference series, 2017, vol. 803, art. 012166, pp. 1–5. doi: 10.1088/1742–6596/803/1/012166.
4. Bobobekov K.M. Ob osobennostyakh realizatsii dvukhparametricheskogo regulyatora stabilizatsii polozheniya mayatnika v srede Matlab [On the peculiarities of realization the two-parameter regulator of stabilization the position pendulum in environment MATLAB]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2016, no. 3 (85), pp. 115–130.
5. Bobobekov K.M. Psevdogodograf Naikvista [Pseudo-hodograph Nyquist]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2016, no. 2 (84), pp. 49–57.
6. Bobobekov K.M., Voevoda A.A., Troshina G.V. [The active identification of parameters for the unstable object]. XI Mezhdunarodnyi forum po strategicheskim tekhnologiyam, IFOST-2016 [The 11th International Forum on Strategic Technology IFOST-2016], Novosibirsk, 1–3 June 2016, pp. 594–596.
7. Voevoda A.A., Bobobekov K.M. Aktivnaya identifikatsiya parametrov modeli perevernutogo mayatnika po uglu pri podache na vkhod sinusoidal'nykh signalov [Active identification of the inverted pendulum model data on angle in applied to the input sinusoidal signal]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2016, no. 2 (84), pp. 21–37.
8. Bobobekov K.M. Identifikatsiya parametrov linearizovannoi modeli perevernutogo mayatnika: testovyi signal – dvoinoi meandr [Identification parameters of the linearized model of an inverted pendulum: test signal – a double meander]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2016, no. 3 (85), pp. 7–17.
9. Bobobekov K.M., Voevoda A.A. Sintez dvukhkanal'noi sistemy polino-mial'nym metodom: obespechenie astatizma [Synthesis of two-channel system polynomial method: ensuring astatic]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2016, no. 1 (83), pp. 7–19.
10. Chen C.T. Linear system theory and design. 3rd ed. New York, Oxford University Press, 1999. 334 p.
11. Voevoda A.A. Stabilizatsiya dvukhmassovoi sistemy: modal'nyi metod sinteza s ispol'zovaniem polinomial'nogo razlozheniya [Stabilisation of two-mass system by a modal method of synthesis with polynomial factorization]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, 2010, no. 1 (38), pp. 195–198.
12. Kim D.P. Teoriya avtomaticheskogo upravleniya. T. 1. Lineinye sistemy [The theory of automatic control. Vol. 1. Linear]. Moscow, Fizmatlit Publ., 2003. 288 p. ISBN 5-9221-0379-2.
13. Doyle J.С., Francis B., Tannenbaum A. Feedback control theory. New York, Macmillan Publ., 1990. 198 p.
14. Mehra R.K. Optimal input for linear system identification. IEEE Transactions on Automatic Control, 1974, vol. 19, no. 3, pp. 192–200.
15. Shoba E.V. Modal'nyi metod sinteza mnogokanal'nykh dinamicheskikh sistem s ispol'zovaniem polinomial'nogo razlozheniya. Diss. kand. tekhn. nauk [The modal method for the synthesis of multi-channel dynamic systems using a polynomial expansion. PhD eng. sci. diss.]. Novosibirsk, 2013. 192 p.
16. Voronoi V.V. Polinomial'nyi metod rascheta mnogokanal'nykh regulyatorov ponizhennogo poryadka. Diss. kand. tekhn. nauk [A polynomial method for calculating the multi-channel controllers low order. PhD eng. sci. diss.]. Novosibirsk, 2013. 173 p.
17. Bobobekov K.M., Voevoda A.A. Polinomial'nyi metod sinteza PI(D)-regulyatora dlya neminimal'no fazovogo ob"ekta [Polynomial method synthesis of PI(D) regulator for non-minimum-phase object]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2015, no. 4 (82), pp. 7–20.
18. Troshina G.V. Ob aktivnoi identifikatsii dinamicheskikh ob"ektov [About active identification of dynamic objects]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2014, no. 4 (78), pp. 41–52. doi: 10.17212/2307-6879-2014-4-41-52.
19. Voevoda A.A., Troshina G.V. Active identification of the inverted pendulum control system. Proceedings of the 18th International Conference on Soft Computing and Measurements (SCM'2015). St. Petersburg, LETI Publ., 2015, vol. 1, pp. 153–156.
20. Voevoda A.A., Voronoi V.V. Polinomial'nyi metod rascheta mnogokanal'nykh regulyatorov zadannoi struktury [Polynomial method for calculating multi-channel controllers of a given structure]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, 2013, no. 2 (51), pp. 214–218.
21. Vostrikov A.S., Voevoda A.A., Zhmud' V.A. Effekt ponizheniya poryadka sistemy pri upravlenii po metodu razdeleniya dvizhenii [The effect of reducing the order of the system that is controlled by the method of separation of motions]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, 2005, no. 3. pp. 3–13.
22. Voevoda A.A., Zhmud' V.A. Astaticheskoe upravlenie ob"ektami nesta-tsionarnymi matrichnymi peredatochnymi funktsiyami metodom priblizhennogo obrashcheniya funktsional'nykh kompleksnykh matrits [Astatic facilities management borne by the stationary matrix transfer functions by approximately the first functional treatment of complex matrices]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, 2006, no. 2. pp. 3–8.
23. Voevoda A.A., Chekhonadskikh A.V., Shoba E.V. Modal'nyi metod sinteza s ispol'zovaniem polinomial'nogo razlozheniya: razdelenie dvizhenii pri stabilizatsii trekhmassovoi sistemy [Modal synthesis method using a polynomial decomposition: the separation of motions in the stabilization of the three-mass plant]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Science bulletin of the Novosibirsk state technical university, 2011, no. 2 (43), pp. 39–46.