Digital technology security

DIGITAL TECHNOLOGY SECURITY

DIGITAL
TECHNOLOGY SECURITY

English | Русский

Recent issue
№2(2025) April - June 2025

Block-textual modeling transportation of kimberlite

Issue No 2 (88) April - June 2017
Authors:

Yu.V. Shornikov,
У.A. Popov,
А.S. Danilov
DOI: http://dx.doi.org/10.17212/2307-6879-2017-2-70-81
Abstract

The workflow of kimberlite transportation in Mirny ore mining and processing enterprise, owned by a group of diamond mining companies, Alrosa PJSC, is studied. The ore extracted at the Internationalnaya mine is loaded into dump trucks and is transported to a temporary warehouse. Then the ore is transported from the temporary warehouse to a main warehouse when needed. The stuff is moved from the main warehouse to the concentrating plant #3. The transportation process contains both continuous and discrete elements, therefore the theory of hybrid systems, a modern approach, is used to analyze it. The block-textual model of the movement of kimberlite between the Inter kimberlite mine and the concentrating plant #3 is built using ISMA, an environment for modeling and simulation of complex dynamical systems, which is developed by Automated control systems department of Novosibirsk state technical university. Block-textual models consist of the components of two types: graphical elements implemented as the block diagrams of control theory and textual elements specified in the LISMA_PDE language. Simulations are carried out in order to assess the effectiveness and reliability of the kimberlite transportation strategy. At some point there happens an emergency at the mine (a flood, an explosion, etc.) causing the mining process to stop for 30 days. Given the simulation results, it can be concluded that the used transportation strategy is correct even if such unforeseen situations occur. Original explicit numerical methods with extended regions of stability and accuracy and stability control and the original correct event detection algorithm for simulation of hybrid systems are used.


Keywords: differential-algebraic equations, hybrid systems, kimberlite, block-textual model, Cauchy problem, Mirny ore mining and processing enterprise, ISMA

References

1. The official site of Alrosa PJSC. (In Russian). Available at: http://www.alrosa.ru/ (accessed 13.09.2017).



2. Kar'ernye samosvaly – seriya 7547 [Haul trucks – 7547 series]. Available at: http://www.belaz.by/catalog/products/dumptrucks/7547/ (accessed 13.09.2017).



3. Shornikov Yu.V. Komponenty yadra programmnogo kompleksa "ISMA" [The components of core of "ISMA 2015" software]. The Certificate on official registration of the computer program. N 2015617235, 2015.



4. Shornikov Yu.V., Myssak M.S., Dostovalov D.N. Computer simulation of hybrid systems by ISMA instrumental facilities. Recent advanced in mathematical methods in applied sciences: proceedings of the 2014 international conference on mathematical models and methods in applied sciences (MMMAS'14): proceedings of the 2014 international conference on economics and applied statistics (EAS'14), St. Petersburg, 23–25 September 2014, pp. 257–262. ISBN 978-1-61804-251-4.



5. Vostrikov A.S, Frantsuzova G.A., Gavrilov E.B. Osnovy teorii nepreryvnykh i diskretnykh sistem regulirovaniya [Theory foundations of continuous and discontinuous control systems]. Novosibirsk, NSTU Publ., 2008. 476 p.



6. Kalitkin N.N. Chislennye metody [Numerical methods]. St. Petersburg, BHV-Peterburg, 2011. 592 p.



7. Shornikov Yu.V., Novikov E.A., Nasyrova M.S. Vychislitel'noe yadro programmnogo kompleksa ISMA 2015 [Computing core of software package “ISMA 2015”]. The Certificate on official registration of the computer program. N 2015617617, 2015.



8. Novikov E.A. Yavnye metody dlya zhestkikh sistem [Explicit methods for stiff systems]. Novosibirsk, Nauka Publ., 1997. 197 p.



9. Shornikov Yu.V., Dostovalov D.N. [Modeling and simulation of stiff hybrid systems with one-sided events in ISMA environment]. Komp'yuternoe modelirovanie 2012: trudy mezhdunarodnogo seminara [Computer modeling 2012: Proceedings of the international workshop]. St. Petersburg, Peter the Great St. Petersburg Polytechnic University Publ., 2012, pp. 36–41.



10. Kolesov Yu.B., Senichenkov Yu.B. Modelirovanie sistem. Dinamicheskie i gibridnye sistemy [Modelling of systems. Dynamical and hybrid systems]. St. Petersburg, BHV-Peterburg Publ., 2012. 224 p.



11. Novikov E.A., Shornikov Yu.V. Komp'yuternoe modelirovanie zhestkikh gibridnykh sistem [Computer simulation of stiff hybrid systems: monograph]. Novosibirsk, NSTU Publ., 2012. 451 p.



12. Esposito J., Kumar V., Pappas G. Accurate event detection for simulation of hybrid systems. Hybrid Systems: Computation and control. LNCS 2034. Berlin, Springer, 2001, pp. 204–217.



13. Forrester J. Industrial dynamics. Cambridge, Massachusetts Institute of Technology Press, 1961. 464 p. (Russ, ed.: Forrester Dzh. Osnovy kibernetiki predpriyatiya: (industrial'naya dinamika). Moscow, Progress Publ., 1971. 342 p.).



14. Berkovich R.P., Koryavov P.L., Pavlovskii Yu.N., Sushkov B.G. DINAMO – yazyk matematicheskogo modelirovaniya: (formal'noe opisanie) [DYNAMO mathematical modelling language (formal description)]. Moscow, Computing centre of the academy of sciencies of the USSR Publ., 1972. 30 p.



15. Shornikov Yu.V., Kirillov V.L., Bessonov A.V., Popov E.A. Modeli sistemnoi dinamiki v okruzhenii ISMA_2015 [System dynamics models in ISMA_2015 environment]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universitetaTransaction of scientific papers of the Novosibirsk state technical university, 2015, no. 4 (82), pp. 122–135.

Views: 2555