The method of synthesizing linear regulators for linear objects using polynomial decomposition, along with classical synthesis methods, such as synthesis in the state space using full and reduced order observers, transfer functions and synthesis using logarithmic frequency characteristics (LATCH), optimal synthesis methods, and others, finds more and more widespread. With a polynomial method of synthesis, as a rule, a transition from polynomial representations to matrix numeric ones is used, which leads to equations with a non-square degenerate Sylvester matrix. When solving the problem of formalizing synthesis algorithms for multichannel systems, it is necessary to return to the synthesis algorithm for single-channel systems. In this paper, based on the results obtained by Chen, Kailath and other authors, based on an analysis of the calculation of numerous examples of calculating single-channel systems, a formal algorithm for the synthesis of regulators is presented. When solving the problem of formalizing synthesis algorithms for multi-channel systems, rely on algorithms for the synthesis of single-channel systems. In this article, is use the results obtained by Chen, Kailath and other authors, which lists the requirements for the polynomial description of the object: the proper (strictly proper) of the transfer function of the object, the mutual simplicity of the polynomials numerator and denominator transfer function of the object. Of particular note is the requirement of mutual simplicity of numerator and denominator polynomials – failure to do so leads, first of all, to degeneration of the Sylvester matrix, and can also lead to violation of controllability, observability, etc. In addition, it is necessary to take into account the restriction imposed on the choice of the degree of the regulator, which is equivalent to limiting the desired characteristic polynomial of the closed system. Based on the analysis of calculations of numerous examples of synthesis of single-channel regulators, six of which are given in this article, a formalized algorithm for the synthesis of regulators is presented. In many studies, in solving the synthesis problem, linearly dependent rows / columns in the Sylvester matrix are zeroed together with the corresponding parameters of the regulator. In this article is propose linearly dependent rows with corresponding unknown parameters of the regulator to be transferred to the right side of the equation. This leads to the appearance of free regulator parameters, which can be set arbitrarily (in some cases additional limiting are imposed). This corresponds to the general solution of a system of linear equations, which when given by a free parameter of the regulator of specific values leads to different versions of the synthesized regulator.
1. Chen C.T. Linear system theory and design. 3rded. New York, Oxford University Press, 1999. 334 p.
2. Kailath T. Linear systems. Englewood Cliffs, NJ, Prentice Hall, 1980. 350 p.
3. Kim D.P. Teoriyaavtomaticheskogoupravleniya. T. 1. Lineinyesistemy [The theory of automatic control.Vol. 1.Linear]. Moscow, Fizmatlit Publ., 2003. 288 p.
4. Kim D.P. Teoriyaavtomaticheskogoupravleniya. T. 2. Mnogomernye, nelineinye, optimal'nyeiadaptivnyesistemy [The theory of automatic control.Vol. 2.Multidimensional, nonlinear, optimal and adaptive systems]. Moscow, Fizmatlit Publ., 2004. 464 p.
5. Gaiduk A.R. Teoriyaimetodyanaliticheskogosintezasistemavtomaticheskogoupravleniya (polinomial'nyipodkhod) [Theory and methods of analytical synthesis of automatic control systems (polynomial approach)]. Moscow, Fizmatlit Publ., 2012. 360 p.
6. Bobobekov K.M Polinomial'nyimetodsintezaodnokanal'noidvukhmassovoisistemy [A polynomial method for the synthesis of single-channel two-mass system].SborniknauchnykhtrudovNovosibirskogogosudarstvennogotekhnicheskogouniversiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2016, no. 4 (86), pp. 25–36.
7. Bobobekov K.M., Voevoda A.A. Raschetparametrovregulyatoradlyastabilizatsiiperevernutogomayatnikapougluotkloneniya [Calculation of controller parameters for the stabilization of the inverted pendulum by corner deviation]. SborniknauchnykhtrudovNovosibirskogogosudarstvennogotekhnicheskogouniversiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2016, no. 3 (85), pp. 18–32.
8. Bobobekov K.M. O normirovaniipolinomovznamenateleiob"ektairegulyatorapripolinomial'nommetodesinteza [About rationing polynomials denominator object and regulator during polynomial method of synthesis]. SborniknauchnykhtrudovNovosibirskogogosudarstvennogotekhnicheskogouniversiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2016, no. 4 (86), pp. 7–24.
9. Gaiduk A.R., Belyaev V.E., P'yavchenko T.A. Teoriyaavtomaticheskogoupravleniya v primerakhizadachakh s resheniyami v MATLAB[Theory of automatic control in examples and problems with solutions in MATLAB]. 2nd ed., rev. St. Petersburg,Lan' Publ., 2011. 464 p.
10. Voevoda A.A., Bobobekov K.M. Resheniepereopredelennoilineinoisistemyuravneniipripolinomial'nomsintezeregulyatorov [Solution of an overdetermined linear system of equations for polynomial synthesis of regulators]. Sovremennyetekhnologii.Sistemnyianaliz.Modelirovanie – Modern Technologies.System analysis. Modeling,2017, no. 4 (56), pp. 84–99.
11. Voevoda A.A. Matrichnyeperedatochnyefunktsii: (osnovnyeponyatiya) [Matrix transfer functions (basic concepts)].Novosibirsk State Technical University. Novosibirsk, NSTU Publ., 1994. 94 p.
12. Voronoi V.V. Polinomial'nyimetodraschetamnogokanal'nykhregulyatorovponizhennogoporyadka.Diss. kand.tekhn. nauk [A polynomial method for calculating the multi-channel controllers low order. PhD eng. sci. diss.].Novosibirsk, 2013.173 p.
13. Shoba E.V. Modal'nyimetodsintezamnogokanal'nykhdinamicheskikhsistem s ispol'zovaniempolinomial'nogorazlozheniya.Diss. kand.tekhn. nauk [The modal method for the synthesis of multi-channel dynamic systems using a polynomial expansion. PhD eng. sci. diss.].Novosibirsk, 2013.192 p.
14. Bobobekov K.M. Ob osobennostyakhrealizatsiidvukhparametricheskogoregulyatorastabilizatsiipolozheniyamayatnika v sredeMatlab [On the peculiarities of realization the two-parameter regulator of stabilization the position pendulum in environment MATLAB].SborniknauchnykhtrudovNovosibirskogogosudarstvennogotekhnicheskogouniversiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2016, no. 3 (85), pp. 115–130.
15. Dorf R.C., Bishop R.H.Modern control systems.12th ed. Harlow, Pearson, 2011. 1111 р.
16. Voevoda A.A., Koryukin A.N., Chekhonadskikh A.V. O ponizheniiporyadkastabiliziruyushchegoupravleniyanaprimeredvoinogoperevernutogomayatnika [Reducing the stabi-lizing control order for a double inverted pendulum].Avtometriya – Optoelectronics, Instrumenta-tion and Data Processing, 2012,vol. 48, no. 6, pp. 69–83.(In Russian).
17. Voevoda A.A., Shoba E.B. Upravlenieperevernutymmayatnikom[About model inverted pendulum]. SborniknauchnykhtrudovNovosibirskogogosudarstvennogotekhnicheskogouniversiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2012, no. 2 (68), pp. 3–14.
18. Doyle J.С., Francis B., Tannenbaum A. Feedback control theory. New York, Macmillan, 1990. 198 p.
19. Voevoda A.A., Voronoy V.V. Modal'nyisintezregulyatorovponizhennogoporyadkametodomdifferentsirovaniyakharakteristicheskogopolinoma[Modal design of reduced order controllers by method of differentiation of the characteristic polynomial].SborniknauchnykhtrudovNovosibirskogogosudarstvennogotekhnicheskogouniversiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2011, no. 1 (63), pp. 3–12.
20. Chekhonadskikh A.V. Algebraicheskiimetodsintezaalgoritmovavtomaticheskogoupravleniyaponizhennogoporyadka. Diss. doct.tekhn.nauk [Algebraic method of synthesis of algorithms for automatic control of reduced order. Dr.eng. sci. diss.]. Novosibirsk, 2013. 341 p.
21. Voevoda A.A., Izhitskaya E.A. Stabilizatsiyadvukhmassovoisistemy: modal'nyimetodsinteza [Stabilization of two-mass systems: modal synthesis method]. SborniknauchnykhtrudovNovosibirskogogosudarstvennogotekhnicheskogouniversiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2009, no. 2 (56), pp. 3–10.
22. Gaiduk A.R. Teoriyaavtomaticheskogoupravleniya [The theory of automatic control]. Moscow, Vysshayashkola Publ., 2010.415 p.
23. Voevoda A.A., Bobobekov K.M. Polinomial'nyimetodsinteza PI(D)-regulyatoradlyaneminimal'nofazovogoob"ekta[Polynomial method synthesis of PI(D) regulator for non-minimum-phase object].SborniknauchnykhtrudovNovosibirskogogosudarstvennogotekhnicheskogouniversiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2015, no. 4 (82), pp. 7–20.
Bobobekov K.M. Formalizatsiya polinomial'nogo metoda sinteza odnokanal'nykh sistem s ispol'zovaniem matritsy Sil'vestra [Formalization of a polynomial method for the synthesis of single-channel systems using the Sylvester matrix]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2018, no. 1 (91), pp. 31–67. doi: 10.17212/2307-6879-2018-1-31-67.